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This article deals with relations between random-
ness and structure in audio and musical sounds.
Randomness, in the casual sense, refers to some-
thing that has an element of variation or surprise in
it, whereas structure refers to something more pre-
dictable, rule-based, or even deterministic. When
dealing with noise, which is the “purest” type of
randomness, one usually adopts the canonical phys-
ical or engineering definition of noise as a signal
with a white spectrum (i.e., composed of equal or
almost-equal energies in all frequencies). This
seems to imply that noise is a complex phenome-
non simply because it contains many frequency
components. (Mathematically, to qualify as random
or stochastic process, the density of the frequency
components must be such that the signal would
have a continuous spectrum, whereas periodic com-
ponents would be spectral lines or delta functions.)

In contradiction to this reasoning stands the fact
that, to our perception, noise is a rather simple sig-
nal, and in terms of its musical use, it does not al-
low much structural manipulation or organization.
Musical notes or other repeating or periodic acous-
tic components in music are closer to being deter-
ministic and could be considered as “structure.”
However, complex musical signals, such as poly-
phonic or orchestral music that contain simultane-
ous contributions from multiple instrumental
sources, often have a spectrum so dense that it
seems to approach a noise-like spectrum. In such
situations, the ability to determine the structure of
the signal cannot be revealed by looking at signal
spectrum alone. Therefore, the physical definition
of noise as a signal with a smooth or approximately
continuous spectrum seems to obscure other signif-
icant properties of signals versus noise, such as
whether a given signal has temporal structure—in
other words, whether the signal can be predicted.

The article presents a novel approach to (auto-
matic) analysis of music based on an “anticipation

profile.” This approach considers dynamic properties
of signals in terms of an anticipation property, which
is shown to be significant for discrimination of noise
versus structure and the characterization and anal-
ysis of complex signals. Mathematically, this is for-
malized in terms of measuring the reduction in the
uncertainty about the signal that is achieved when
anticipations are formed by the listener.

Considering anticipation as a characteristic of a
signal involves a different approach to the analysis
of audio and musical signals. In our approach, the
signal is no longer considered to be characterized
according to its features or descriptors alone, but its
characterization takes into account also an observer
that operates intelligently on the signal, so that both
the information source (the signal) and a listener
(information sink) are included as parts of one model.
This approach fits very well into an information
theoretic framework, where it becomes a characteri-
zation of a communication process over a time-
channel between the music (present time of the
acoustic signal) and a listener (a system that has
memory and prediction capabilities based on a sig-
nal’s past). The amount of structure is equated to
the amount of information that is “transmitted” or
“transferred” from a signal’s past into the present,
which depends both on the nature of the signal and
the nature of the listening system.

This formulation introduces several important
advantages. First, it resolves certain paradoxes re-
lated to the use of information theoretic concepts in
music. Specifically, it corrects the naïve equation of
entropy (or uncertainty) to the amount of “interest”
present in the signal. Instead, we are considering the
relative reduction in uncertainty caused by predic-
tion/anticipation. Additionally, the measure has the
desired “inverted-U function” behavior that charac-
terizes both signals that are either nearly constant
and signals that are highly random as signals that
have little structure. In both cases, the reduction in
uncertainty owing to prediction is small. In the first
case, this is caused by the small amount of variation
in the signal to start with, whereas in the second
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case, there is little reduction in uncertainty, be-
cause prediction has little or no effect. Finally, this
formulation also clarifies the difference between
determinism and predictability. Signals that have
deterministic dynamics (such as certain chaotic sig-
nals) might have varying degrees of predictability,
depending on the precision of the measurement or
exact knowledge of their past. A listener, or any
practical prediction system, must have some uncer-
tainty about its past, and this uncertainty grows
when trying to predict the future, even in case of a
deterministic system.

The ideas in the article are presented starting
from a background of information theory and basis
decomposition, followed by the idea of a vector ap-
proach to the anticipation measurement, and con-
cluding with some higher-level reflections on its
meaning for complex musical signals. The presen-
tation takes several approaches: an engineering or
signal-processing approach, in which notions of
structure are related to basic questions about signal
representation; an audio information-retrieval ap-
proach, in which the ideas are applied for characteri-
zation of natural sounds; and a musical analysis
approach, in which time-varying analysis of musi-
cal recordings is used to create an “anticipation pro-
file” that describes their structures. This last aspect
has interesting possibilities for exploring relation-
ships among signal measurements and human cog-
nitive judgments of music, such as emotional force.

The main contribution of our model is in the vec-
tor approach, which generalizes notions of anticipa-
tion for the case of complex, multi-component
musical signals. This measure uses concepts from
principle components analysis (PCA) and indepen-
dent components analysis (ICA) to find a suitable
geometric representation of a monaural audio
recording in a higher-dimensional feature space.
This pre-processing creates a representation that al-
lows estimating the anticipation of a complex sig-
nal from the sum of anticipations of its individual
components. Accordingly, the term complex signal
used throughout this article describes the multi-
component nature of a single-channel recording and
should not be confused with multiple-channel
recordings.

Our Model

Our model of signal structure considers musical or
audio material as an information source, which is
communicated over time to a listener (either hu-
man or machine). The amount of information
transmitted through this communication process
depends on the nature of the signal and the listener.
The listener makes predictions and forms expecta-
tions; the music source generates new samples. Ac-
cordingly, we define structure to be the aspect of
musical material that the listener can predict, and
noise or randomness as what the listener would
consider as an unpredictable flow of data.

Information, Entropy, Mutual Information, and
Information Rate

When a sequence of symbols, such as text, music,
images, or even genetic codes are considered from
an information theoretic point of view, it is as-
sumed that the specific data is a result of produc-
tion by an information source. The concept of the
information source allows description of many dif-
ferent sequences by a single statistical model with a
given probability distribution. The idea of looking
at a source, rather than a particular sequence, char-
acterizes which types of sequences are probable and
which are not—in other words, what data is more
likely to appear. Information theory also teaches
that, “in the long run,” some sequences become
typical of the source, while others might turn very
improbable or so rare that they would, in practice,
never occur.

The logarithm of the relative size of the typical
set (log of the number of typical sequences divided
by log of number of all possible sequences of the
same length) is called entropy, and it is considered
as the characteristic amount of uncertainty inher-
ent to the source. The larger the typical set, the
higher the uncertainty, and vice versa. For instance,
a biased coin that falls mostly on “heads” will pro-
duce sequences whose empirical average approaches
the statistical mean, which comprises only a small
fraction of all possible sequences of “heads” and
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“tails.” In such a case, the proportion of the size of
the typical set (i.e., a set comprising mostly “heads”)
relative to the number of all possible sequences (the
number two, raised to the power of the number of
coin flips we performed) is low, and the source will
be considered to have little entropy or little uncer-
tainty. More equally distributed sources (such as
multiple flips of a fair coin) will have a larger typical
set and high uncertainly.

When information theory is used to describe a
single information source, the concepts of entropy
have direct relation to the coding size or compres-
sion lower bounds for that source. What is more in-
teresting for our case is the aspect of information
theory that deals with information channels, or the
relationship between the information source and
the information sink. In a physical communication
channel, the source could be the voice of a person
on one end of a phone line, the sink would be the
voice emerging form the other end, and the channel
noise would be the actual distortion caused to the
source voice during the transmission process. Both
signals are ideally similar, but not identical. The
uncertainty about what was transmitted, remaining
after we have received the signal, is characteristic
of the channel. This notion is mathematically de-
scribed using mutual information, which is de-
fined as the difference between entropy of the
source and conditional entropy between the source
and the sink. If we consider source and sink as two
random variables x and y, mutual information de-
scribes the cross-section between their entropies, as
shown in Figure 1.

Denote by H(x) = ∑P(x)log P(x) the entropy of vari-
able x (a source that has probability P(x)). This is de-
picted by the left (gray) circle in Figure 1; H(y) is the
right (dotted) circle of variable y; and H(x,y) depicts
the outer contour of both sources together. The con-
ditional entropy H(x|y) depicts the uncertainty
about x if y is known (and vice versa for H(y|x)). The
function I(x,y) is the cross-section (grid) that indi-
cates how much overlap in uncertainty occurs be-
tween x and y, that is, how much information one
variable carries about the other. In extreme cases, if
the two sources are independent, the two circles
will have no overlap, and I(x,y)=0, accordingly. If x
and y are exactly equivalent (i.e., knowing x is
equivalent to knowing y), the two circles then will
completely overlap each other, and I(x,y) = H(x) =
H(y) = H(x,y). The conditional entropy in such a
case is zero, because knowledge of one variable
completely describes the other, leaving no condi-
tional uncertainty (i.e., H(x|y) = H(y|x) = 0). Mathe-
matically, the above relations have simple algebraic
expressions that are directly related to the marginal
distributions P(x), P(y), and their common distribu-
tion P(x,y).

(1)

Information Rate and Anticipation as “Capacity” of
a “Time-Channel”

As we explained, mutual information is commonly
used for theoretical characterization of the amount
of information transmitted over a communication
channel (see Figure 2). For our purposes, we will
consider a particular type of channel that is differ-
ent from a standard communication model in two
important aspects. First, the channel is a time chan-
nel and not a physical transmission channel. The
input to the channel is the history of the signal up
to the current point in time, and the output is its
next (present) sample. Second, the receiver must ap-
ply some algorithms to predict the current sample
from its past samples. The information at the sink y
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Figure 1. Entropies H(·) for
separate variables x and y
and the pair (x,y), condi-
tional entropies H(x|y) and
H(y|x), and mutual infor-
mation I(x,y).



consists of the signal history x1, x2, . . . , xn–1 avail-
able to the receiver prior to its receiving or hearing
xn. The transmission process over a noisy channel
now has the interpretation of prediction/anticipa-
tion performance over time. The amount of mutual
information depends on the “surprise” that the
time-channel introduces to the next sample versus
the ability of the listener to predict this surprise.

This notion of information transmission over
time-channel is captured by the information rate
(IR, also called the scalar-IR). This is defined as the
relative reduction of uncertainty of the present
when considering the past, which equals to the
amount of mutual information carried between the
past xpast = {x1, x2, . . . , xn–1} and the present xn. It can
be shown using appropriate definitions of informa-
tion for multiple variables, called multi-information,
that the information rate equals the difference be-
tween the multi-information contained in the vari-
ables x1, x2, . . . , xn and x1, x2, . . . , xn–1 (i.e., the
amount of additional information that is added
when one more sample of the process is observed):

(2)

One can interpret IR as the amount of informa-
tion that a signal carries into its future. This is
quantitatively measured by the number of bits that
are needed to describe the next event once anticipa-
tion or prediction based on the past has occurred.
Let us now discuss the significance of IR for the de-
lineation of structure and noise for several example
cases.

Example Case 1: “Inverted-U Function” for the
Amount of Structure

A purely random signal cannot be predicted and
thus has the same uncertainty before and after pre-
diction, resulting in zero IR. An almost constant
signal, on the other hand, has a small uncertainty
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H(x), resulting in an overall small IR. High-IR sig-
nals have large differences between their uncer-
tainty without prediction H(x) versus the remaining
uncertainty after prediction H(x | past of x). As men-
tioned in the Introduction, one of the advantages of
IR is that in the “IR sense,” both constant and com-
pletely random signals carry little information.

Example Case 2: The Relative “Meaning” of Noise

Let us consider a situation in which two systems at-
tempt to form expectations about the same data.
One system has a correct model, which allows good
predictions for the next symbol. In the case when
the uncertainty about the signal is large but the re-
maining uncertainty after prediction is small, the
system manages to reveal the signal’s structure and
achieves its information-processing task, resulting
in high IR.

Let us consider a second system that does not
have the capability of making correct predictions. In
such a case, the quality of prediction, which can be
measured by the number of bits needed to code the
next symbol, remains almost equal to the amount
of bits required for coding the original signal with-
out prediction. In such a case, the discrepancy be-
tween the two coding lengths is zero, and no
information reduction was achieved by the system,
resulting in a low IR.

Example Case 3: Signal Characterization

The previous discussion suggests that the IR is de-
pendent on the nature of the information-processing
system as well as the type of signal. Only in the case
of an ideal system that has access to complete sig-
nal statistics does the IR become a characterization
of the signal alone, independent of the information-
processing system.

Example Case 4: Determinism Versus
Predictability

An interesting application of IR is characterization
of chaotic processes. Considering for instance a lo-
gistic map x(n + 1) = ax(n)(1 – x(n)), it is evident that
knowledge of x(n) provides complete information
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for prediction of x(n + 1). A closer look at the prob-
lem reveals that if the precision of measuring x(n)
is limited, the measurement error increases with
time. For a = 4 (chaos), the error approximately dou-
bles every step, increasing the uncertainty by factor
two, which amounts to a loss of one bit of informa-
tion. This example shows that even complete
knowledge of system dynamics might not suffice to
make perfect predictions and that IR is dependent
on the nature of measurement as well.

Example Case 5: Equivalence of Scalar-IR to
Spectral Flatness Measure

The spectral flatness measure (SFM; Jayant and
Noll 1984) is a well-known method for evaluating
the “distance” of a process from white noise (see
Appendix). It is also widely used as a measure for
“compressibility” of a process, as well as an impor-
tant feature for sound classification (Allamanche et
al. 2001). Given a signal with power spectrum S(w),
the SFM is defined as

(3)

and it is positive and less than or equal to one. It has
a value of unity for a white-noise signal.

For large n, IR equals the difference between the
marginal entropy and entropy rate of the sequence
or signal x(n), r(x) = limn→∞ r(x1, . . . , xn) = H(x) –
Hr(x), where the entropy rate is the limit of condi-
tional entropy for large n, Hr(x) = limn→∞ H(xn | x1,
x2, . . . , xn–1). Using expressions for the entropy and
entropy rate of Gaussian process, one arrives at the
following relation (Dubnov 2004):

(4)

Equivalently, one can express IR as a function of
SFM:

(5)

Figure 3 shows the close relationship between
spectral flatness and the IR measure for a nature
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recording from a jungle. The figure shows the IR
measure plotted on top of the signal spectrogram.
(The values of IR were scaled so that it would dis-
play conveniently on top of the spectrogram.) It can
be seen that signal segments that contain flat spec-
trum (either silences or bursts of high-bandwidth
noise) correspond to low IR, and segments that con-
tain harmonic or narrow-band noise have higher IR.
It should be noted that this example contains
sounds of mostly pitched bird singing alternating
with noisy bird cries, which is a “segmentation”
type of processing that can be performed using
scalar-IR. In the next example, we will introduce
the concept of vector-IR and consider a complex sit-
uation of simultaneously mixed periodic and noisy
signals.

Extension of IR for Multivariate (Vector) Process

In the case of complex signals, such as those com-
prising several components, or described by se-
quences of spectral descriptors, or sequences of
feature vectors, we must consider new type of IR
that would be appropriate for dealing with a se-
quence of multiple variables described as vectors in
a higher-dimensional space. We will discuss such
representations in the context of audio basis and
geometric signal representation in the next section.

Using capital-letter notation for vector variables,
we denote a sequence of vectors by X1X2 . . . XL and
generalize the IR definition (to be called vector-IR) as

(6)

The new definition of multivariate information
rate represents the difference in information over L
consecutive vectors minus the sum of information
in the first L–1 vectors and the multi-information
between the components within the last vector XL.
Let us assume that some transformation T exists,
such that S = TX and the components S1S2 . . . SL

after transformation are statistically independent.
Using relations between entropies of a linear trans-
formation of random vectors, it can be shown (Dub-
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nov 2003) that IR may be calculated as a sum of IRs
of the individual components, si(n), i = 1 . . . n,

(7)

The vector-IR generalization allows identification
of the structural elements of the signal as the com-
ponents with high scalar-IR.

Example: Vector-IR Analysis of Mixed Sinusoidal
and Noise Components

Given a sinusoidal signal s(t) = sin(wt + ϕ) and a
white-noise signal n(t), we consider the case of a
mixed sinusoidal and noise signal x(t) = s(t) + n(t).
For this signal, we may find separate signal and
noise spaces using singular value decomposition
(SVD) using signal representation as a sequence of
frames containing consecutive signal samples

� �L L i i
i

n

X X X s i s L( , ,..., ) ( ( ),..., ( ))1 2
1

=
=
∑

(8)

Concatenating L signal segments into a matrix X =
[X1X2 . . . XL], SVD provides a decomposition X =
UΛVT, which gives the n basis vectors in columns
of the U matrix (orthogonal n dimensional vectors),
a diagonal matrix Λ that gives the n variances of the
coefficients, and the first n rows of the matrix VT

that give the normalized expansion coefficients in
this space.

Figure 4 shows the results of applying SVD to the
sinusoidal and noise signal. The first two basis vec-
tors are the two quadrature sinusoidal components.
The remaining basis vectors are the noise compo-
nents. Figure 5 shows the corresponding expansion
coefficients.

We apply scalar-IR analysis to the first n rows of

X x x x X x x x X

x x x
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trogram. See text for more
detail.
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the matrix VT using the SFM method of scalar-IR
estimation. The sum of the scalar-IRs yields the
vector-IR. These estimates were compared to the
scalar-IR of the individual sinusoidal and noise sig-
nals and their sum signal. In Table 1 in the paran-
thesis, we show the value of SFM for these signals,
which is bounded between zero and one, making it
somewhat easier to consider these values as a mea-
sure of the amount of structure. To read the SFM val-
ues, one should recall that SFM values close to one
indicate noise and values near zero indicate structure.
In the case of vector-IR, the SFM value is actually the
generalized-SFM, which is a result of summing the
individual scalar-IRs and transforming the resulting
vector-IR back to SFM. We use the relationship

(9)

which also equals the product of the individual col-
umn SFMs. So, in principle, presence of a strong
structural element (i.e., SFM close to zero) makes
the generalized SFM small, indicating structure.
This depends of course on the ability of SVD to sep-
arate the structural components (in practice, the
SVD of the sines+noise signal contained some errors
in the structural components that it found, result-
ing in a higher generalized-SFM than the theoretical

generalizedSFM e vectorIR= − ⋅2

product of the SFMs of the individual sinusoid or
noise signals).

These results show that the amount of structure
revealed by vector-IR (or generalized-SFM) for the
sines+noise signal is significantly higher (and SFM
lower) than the structure estimated by scalar-IR on
the sum signal. It should also be noted that vector-IR
estimation of noise components is imperfect, result-
ing in nonzero values. In general, there seems to be a
tradeoff between the precision of estimation of struc-
tured and noise components using the SFM proce-
dure. Using low-resolution spectral analysis in SFM
estimation allows better averaging and improved es-
timation of the noise spectrum. This comes at the
expense of poorer estimation of peaked or spectrally
structured components. Using high-resolution spec-
tral estimate causes better resolution of the spectral
peaks, but creates a bias towards structured results.
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Figure 4. Four basis vectors
(shown as rows) obtained
by SVD.

Figure 5. Expansion coeffi-
cients that correspond to
the basis vectors of Figure 4.

Table 1. Scalar-IR and Vector-IR Values for the Ex-
ample Sinusoidal Component, Noise Component,
and Combined Sines+Noise Signal

Sinusoid Noise Sines+Noise

Scalar-IR (SFM) 6.31 (3 × 10–6) 8.7e-5 (0.99) 0.16 (0.72)
Vector-IR (SFM) 8.18 (7 × 10–8) 0.21 (0.657) 2.44 (0.007)



Audio Basis Representation

A common representation of audio results from
transforming the time signal into the spectral do-
main using the Short-Time Fourier Transform
(STFT). This processing is performed by applying
the Fourier Transform to blocks of audio samples
using a sliding-window that extracts short signal
segments (also called frames) from the audio
stream. It should be noted that each frame could
be mathematically considered as a vector in a high-
dimensional space. This approach can be general-
ized using additional types of transforms such as
various types of filter banks, cepstral analysis, or
auditory models, giving different types of features
that might be better adapted to the specific pro-
cessing task.

Spectral Audio Basis

When considering audio representations, a balanced
tradeoff between reducing the dimensionality of
data and retaining maximum information content
must be achieved. For these reasons, various re-
searchers and standards (Casey 2001; Lewicki 2002;
Kim, Moreau, and Sikora 2004) have proposed fea-
ture extraction methods based on the projection of
the transformed frames of the spectrum into a low-
dimensional representation using carefully selected
basis functions. A scheme of such a feature-
extraction system is described in Figure 6. To assure
independence between the transform coefficients
for purpose of vector-IR analysis, additional statisti-
cal procedures must be applied to the different
transform coefficients (or in the case of the STFT,
different frequency channels).

Although Fourier channels are asymptotically in-
dependent, short-term statistics of different spectral
channels may have significant cross-correlations.
This dependence can be effectively removed using
various methods that are described in the following
section. Another common representation of spectral
contents of audio signals is by means of cepstral co-
efficients (Oppenheim and Schafer 1989). The cep-
strum is defined as the inverse Fourier transform of
a logarithm of the absolute value of Fourier trans-

form of the signal C = F–1 {log(| F {x(n)} |)}. One of the
great advantages of the cepstrum is its ability to
capture different details of signal spectrum in one
representation. For instance, the energy of the sig-
nal corresponds to first cepstral coefficient. Lower
cepstral coefficients capture the shape of the spec-
tral envelope or represent its smooth, gross spectral
details. Detailed spectral variations such as spectral
peaks corresponding to pitch (the actual notes
played) or other long-term signal correlations ap-
pear in the higher cepstral coefficients. Selecting
part of the cepstrum allows easy control over the
type of spectral information that we submit to the
IR analysis.

Clever choice of the transformation carries sev-
eral advantages, such as energy compaction (com-
pression by retaining the high-variance coefficients),
noise reduction (projection onto separate signal and
noise spaces), and improved recognition (finding
salient features). The basic idea is that a signal of
interest can be represented by linear combination
of a few strong components (basis functions). The
rest of the signal (parts that contain noise, interfer-
ence, etc.) are assumed to reside in a different sub-
space and are ideally weak and approximately of
equal energy.

There are several methods for estimation of low-
rank models, such as Eigen-spectral analysis and
singular value decomposition (SVD), PCA (also
known as the Karhunen-Loeve Transform, or KLT),
and ICA. For each model, we begin by assuming
that the measurements are collected into frames of
n samples each, thus consisting a vector x. The
model is written as

(10)

where X are the actual measurements, S are the ex-
pansion coefficients (sometimes also considered as
the separate source components), A is an array of
basis vectors, and N is an additive noise indepen-
dent of S. Written explicitly, the former equation

X AS N= +
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Figure 6. Geometrical sig-
nal representation consist-
ing of a transform
operation followed by
data reduction.
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represents X as a combination of basis vectors that
are the columns of A

(11)

In our case, we are interested, in addition to the
compaction or the noise removal property, in the
independence of expansion coefficients S to allow
estimation of vector-IR. This can be achieved by
means of PCA for the case of a Gaussian multivari-
ate process. It causes the components to be un-
correlated, which in general is not a sufficient
condition for statistical independence. In the case
of a Gaussian process, uncorrelated components
are indeed independent.

For more general types of multivariate processes
(such as in case that the signals are non-stationary
or non-Gaussian), more sophisticated methods such
as ICA can be used (Cichocki and Amari 2002). For
the purposes of the present discussion, we shall as-
sume that for most practical purposes our signals
could be assumed to be multivariate Gaussian.
Accordingly, we consider PCA or its alternative
formulation using SVD. Using matrix notation
X1X2 . . . , the columns are arranged in the order of
subsequent feature vectors in time. Applying audio
basis modeling, these features are represented as a
sequence of coefficients S, with basis functions
given by basis vectors written as columns of ma-
trix A and usually ignoring the remaining noise
components n:

(12)

The problem of vector data decomposition into
independent components is an active field of re-
search. It should be noted that there are no closed-
from solutions for ICA for multi-component,
single-microphone signals. There are several works
in the literature that attempt to perform monaural
ICA using adapted source-filter models that are
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learned from prior examples of the single sources
(Roweis 2000; Ozerov et al. 2005). These methods
are not applicable to our purpose, because training
or prior adaptations are not possible. Another re-
lated approach is that of Independent Subspace
Analysis (ISA), where factorization of the spectro-
gram is achieved through projection of the spectro-
gram matrix unto subsets of ICA vectors that are
then clustered into sets that are believed to belong
to individual sources (Casey and Westner 2000;
Dubnov 2002; Fitzgerald, Coyle, and Lawlor 2002;
Smaragdis and Brown 2003; Uhle, Dittmar, and
Sporer 2003).

Vector-IR Anticipation Algorithm

Having defined the various components that are
necessary for IR analysis of complex signals, we
present in Figure 7 the complete algorithm for anal-
ysis of IR using Audio Basis representations. In the
first stage of analysis, we derive an appropriate geo-
metrical representation, either as frames of audio
samples or some features extracted from these
frames, using the STFT, Filter Banks, Cepstral anal-
ysis, Mel-Frequency Cepstral Coefficients (MFCC),
or some other method. Then, we perform basis de-
composition, combined with data reduction by pro-
jection into a lower-dimensional subspace. The
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Figure 7. Anticipation al-
gorithm flowchart.



final step consists of separate estimation of the IR of
the individual components, according to the prin-
ciples of IR estimation for multivariate/vector pro-
cesses described earlier. Having described the
different stages in the anticipation algorithm, we
now describe the application of this method to au-
dio characterization and musical analysis.

Comparison of Vector and Scalar-IR Analysis for
Natural Sounds

In this and the following sections, we examine nat-
ural sounds that contain significant energy through-
out all frequencies of the spectrum. Figure 8 shows
the magnitude spectrum on a decibel scale (log-
magnitude) of a cheering crowd sound. This sound
contains a dense mixture of different types of sounds.
Hand clapping can be seen as vertical lines, while

the vocal exclamations appear as high-amplitude
spectral lines varying in time.

Performing vector-IR analysis shows that different
coefficients contain different IR structure. Figure 9
shows the result of IR analysis of a cheering-crowd
signal sampled at 8 kHz using an FFT of size 256
with 50 percent overlap. A total of 129 spectral bins
are retained (half the total bins due to symmetry of
the STFT, plus the first bin). The IR analysis con-
sists of decorrelation of log-magnitude spectral
matrix using SVD and evaluation of scalar-IR
separately for each of the expansion coefficients.
Scalar estimation of IR of each of the coefficients
consists of estimating SFM from the power spectral
density of the coefficient time series using the
Welch method (Hayes 1996) with 64 spectral bins.

The results of vector-IR analysis were compared
to scalar-IR analysis of the signal. Additionally, a
synthetic signal with a power spectral density simi-
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Figure 8. Spectrogram of a
cheering crowd.
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lar to that of the original cheering-crowd signal was
constructed by means of passing white noise through
an appropriate filter, whose parameters were esti-
mated using linear prediction (LP) with eight filter
coefficients. This synthetic signal, even though
non-white, has little overall structure, because its
different spectral bands (considered either as coeffi-
cients of STFT or outputs of a filterbank) lack a
time structure. The log-magnitude spectral matrix
of such a signal can be described as a rank-one con-
stant matrix corresponding to single basis vector
that captures the overall spectral shape, and a noise
matrix that represents the variations between the
different bands at different times. The SVD of such
matrix contains a single structured basis vector that
captures the overall spectral shape, and remaining
basis vectors having white (and thus non-structured)
coefficients. The purpose of testing IR for this syn-
thetic signal was to examine the robustness of

vector-IR analysis to the influence of an overall
spectral shape, that is, to compare the real signal to
a colored noise signal that does not have the de-
tailed temporal structure within its individual
bands. The results of vector-IR and scalar-IR anal-
ysis of both signals are given in Table 2.

It can be seen that vector-IR efficiently detects
the structure in the original cheering-crowd signal,
distinguishing it from the corresponding filtered
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Figure 9. Vector-IR anal-
ysis of cheering crowd sig-
nal using spectral
log-magnitude features
and SVD-derived bases.

Table 2. Results of Vector-IR and Scalar-IR Analysis
of the Original Cheering-Crowd Signal and a Corre-
sponding Synthetic Signal

Equivalent
Original Signal Filtered Noise

Vector-IR 10.3 1.9
Scalar-IR 1.9 1.6



noise. Additional improvement in terms of achiev-
ing a bigger difference between vector-IR of the orig-
inal signal versus spectrally matched noise signal
can be achieved by discarding coefficients whose
scalar-IR values fall below a threshold value. Using
threshold values of 0.05 and 0.1 results in zero vector-
IR for the matching noise signal, and vector-IR val-
ues of 8.5 and 8.0, respectively, for the original
cheering-crowd signal. It should be noted that this
method of dimension reduction is different from the
usual methods that discard components according
to their variance (energy); here, we discard compo-
nents according to amount of their IR structure.

Figure 10 shows the first four basis vectors of the
spectral log-magnitude data. Visual inspection of the
spectrogram in Figure 8 shows that the first compo-
nent roughly corresponds to an average overall spec-
tral envelope, and the next basis vectors capture
some of the spectral patterns that correspond to high
energy peaks around 1, 3, and 6 kHz. Such visual
inspection should be done by translating the gray
levels in Figure 8 to values on the vertical axis of Fig-
ure 10 (amplitudes of the basis functions), with dark
lines corresponding to high amplitude and brighter
shades corresponding to weaker amplitudes.

The amount of structure (IR) of their respective
expansion coefficients are 0.41, 0.78, 1.15, 1.04, as
shown in Figure 9. It should be noted that the first
basis function that has been ranked first in terms of

energy (variance) by SVD actually has little struc-
ture in terms of IR.

Characterization of Natural Sounds Using Vector-IR

One possible application of IR analysis is as a de-
scriptor for complex sounds such as natural sounds
and sound effects. Such a descriptor provides char-
acterization of a signal in terms of its overall
“complexity,” that is, considering the amount of
structure that occurs in a sound when it is consid-
ered as a random process (as sound texture). In Figure
11, we represent several sounds in a two-dimensional
plane consisting of a vector-IR axis and a signal en-
ergy axis. In this analysis, the IR estimation was
preformed using cepstral features, excluding the
first energy related coefficient, which was used for
energy estimation. IR estimation was done using 30
cepstral coefficients, with frames 512 samples long
with 50 percent overlap, and scalar-IR estimation
using SFM with power spectral estimation using
Welsh method with 64 spectral bins.

One may note that the energy and IR characteris-
tics in Figure 11 correspond to our intuitive notions
about the character of these sounds. For instance,
fire sounds are the most noise-like, with little varia-
tion in energy. This can be compared to a phone-
ringing sound that is highly “anticipated,” and car
crash, glass break, and cheering crowd that have in-
termediate levels of IR, with the car crash having
the largest energy variation.

Anticipatory Listening and Music Applications

In this section, we reach what may be the most in-
teresting and speculative application of the IR
method, exploring the relationship between the IR
measure and concepts of auditory and musical an-
ticipation (Meyer 1956). In previous sections, we
have applied a single IR analysis to a complete sig-
nal, resulting in a single number that describes the
overall anticipation property of the sound. When
listening to longer audio signals or music, the prop-
erties of time-evolving signals cannot be summarized
into a single “anticipation number.” Accordingly,
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Figure 10. First four spec-
tral magnitude basis
functions.
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we extend the method of IR analysis to the non-
stationary case by applying IR in a time-varying
fashion.

In the following example, we represented a sound
in terms of a sequence of spectral envelopes, repre-
sented by spectral or cepstral coefficients. These
vectors are grouped into macro-frames and submit-
ted to separate IR analyses, resulting in a single IR
value for each macro-frame. When the IR graph is
plotted against time, one obtains a graph of IR evo-
lution over the course of the musical signal; we call
this the anticipation profile. Using different anal-
ysis parameters, anticipation profiles could be used
to analyze affective vocalizations (Slaney and
McRoberts 1998) or musical sounds (Scheirer 2000).
For the purpose of vocalization analysis, the IR
macro-frames are 1 sec long with 75 percent over-
lap. For analysis of musical recordings, longer
frames are required, varying from 3 sec for solo or
chamber instrumental music to 30 sec for complex

orchestral textures. (The reason for this will be ex-
plained in the next section.)

Anticipation Profile of Musical Signals

A comparative vector-IR analysis of musical signal
using 30 cepstral and 30 magnitude spectral basis
components is presented in Figure 12 for an excerpt
from the first movement of Schumann’s Piano Quar-
tet in E-flat Major. The features were estimated over
signal frames of 20 msec duration. The macro-frame
for IR analysis was 3 sec long with 75 percent over-
lap between successive analysis frames. Figure 12
shows vector-IR results for the two representations,
overlaid on top of a signal spectrogram.

As can be seen from the figure, both methods re-
sult in similar anticipation profiles. Varying the or-
der of the model (changing the data reduction or so
called cepstral “liftering” number) between 20 and
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Figure 11. Energy and IR
distribution of different
natural sounds.



60 components has little effect on the results, indi-
cating that the system is quite robust to changes in
the representation detail.

When considering the results of this analysis, one
might argue that the nature of music of the Schu-
mann piano quartet is such that its structure might
be detected using simpler methods, such as energy
or other existing voice-activity detectors. To show a
situation where vector-IR analysis gives a unique
glimpse into musical structure that other features
do not allow, we present in Figure 13 the results of
vector-IR analysis of an acoustic recording of a
MIDI rendering of Bach’s Prelude in G Major from
Book I of the Well-Tempered Clavier.

The synthetic nature of the computer playback of
a MIDI file is such that the resulting acoustic signal
lacks almost any expressive inflections, including
dynamics. Moreover, the use of a synthetic piano
creates a signal with little spectral variation. As can
be observed in Figure 13, vector-IR still detects sig-

nificant changes in the music. Analysis of similari-
ties between the IR curves and the major sections of
the score from a music-theoretical point of view
seem to indicate that the anticipation profile cap-
tures relevant aspects of the musical structure. For
instance, the first drop of the IR graph corresponds
to the opening of the prelude, ending at the first ca-
dence and modulation to the dominant. The follow-
ing lower part of IR graph corresponds to two
repetitions of an ostinato pattern. Then the two
peaks in IR seem to be related to reappearance of the
opening theme with harmonic modulations, ending
in the next IR valley at the repeating melodic pat-
tern on the parallel minor. The next increase in IR
corresponds to development section on the domi-
nant, followed by a final transition to cadence, with
climax and final descent along the cadential passage.

To have a better impression of the correspon-
dence between the variation in music structure and
texture to our analysis, we present in Figure 14
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Figure 12. Graph of the an-
ticipation profile (esti-
mated by vector-IR) using
cepstral (solid) and spec-
tral magnitude (dotted)

features, displayed over a
spectrogram of a musical
excerpt (the first move-
ment of Schumann’s Piano
Quartet in E-flat Major).
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again the same graph of anticipation profile, this
time overlaid on top of MIDI notes. (The crosses in-
dicate note onsets, with actual note numbers not
represented in the graph.)

It appears that changes and repetitions of music
materials are detected by IR analysis of the acoustic
signal. (It should be noted that our anticipation
analysis does not involve note or pitch detection or
any use of the score of MIDI information.)

Anticipation Profile and Emotional Force

To evaluate the significance of the IR method for
music analysis, a comparison between anticipation
profiles derived from automatic signal analysis and
human perception of musical contents is required.
In a recent experiment, large amounts of data con-
cerning human emotional responses when listening
to a performance of a contemporary orchestral mu-

sical work (Angel of Death by Roger Reynolds) was
collected during live concerts (McAdams et al.
2002). During these concerts, listeners were as-
signed a response box with a sliding fader that al-
lowed continuous analog ratings to be made on a
scale of emotional force (Smith 2001). Listeners
were instructed that positive or negative emotional
reactions of similar magnitude were to be judged at
the same level of the emotional force scale. The
ends of the emotional force scale were labeled
“weak” and “strong.” In addition, a small “I don’t
know” region was provided at the far left end of this
scale that could be sensed tactilely, as the cursor
provided a slight resistance to moving into or out of
this zone.

Continuous data from response boxes were con-
verted to MIDI format (on an integer scale from 0 to
127) and recorded simultaneously with the musical
performance. Figure 15 presents a comparative
graph of the anticipation profile resulting from IR
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Figure 13. Graph of antici-
pation profile (estimated
by vector-IR) using 30 cep-
stral features, displayed
over a spectrogram of a
musical excerpt (Bach’s

Prelude in G Major from
Book I of the Well-
Tempered Clavier). The
acoustic signal was cre-
ated by computer render-
ing of a MIDI file.



analysis of the audio signal (the concert recording)
and a graph of the average human responses termed
“Emotional Force” (EF) for two versions of the or-
chestral piece.

Analyses were performed using analysis frame
sizes of 200 msec with macro-frames 3 sec long,
with no overlap between the macro-frame seg-
ments. These IR values were additionally smoothed
using a 10-segment-long moving-average filter, re-
sulting in an effective analysis frame of 30 sec with
a 3-sec interval between analysis values. The extra
averaging removed fast variations in vector-IR anal-
ysis, assuming that a 30-sec smoothing better
matches the rate of change in human judgments
for such a complex orchestral piece.

As can be seen from Figure 15, certain portions of
the IR curve fit closely to the EF data, whereas other
portions differ significantly. It was found that corre-
lation of the IR data and the EF were 63 percent and
47 percent for top and bottom graphs, respectively.

Combined with additional signal features such as
signal energy, higher correspondence between signal
information analysis and Emotional Force judg-
ments was achieved. The analysis shows strong evi-
dence that signal properties and human reactions are
related, suggesting applications of these techniques
to music understanding and music information-
processing systems. Full details of the experiments
and the additional information analysis methods
will appear elsewhere (Dubnov, McAdams, and
Reynolds in press).

Thoughts About Self-Supervised Brain Processing
Architecture

We would like to consider briefly in this section the
possible relationships between anticipation analysis
and self-supervised architectures of brain pro-
cessing, particularly in relation to higher cognitive
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Figure 14. Graph of antici-
pation profile (estimated
by vector-IR from an audio
recording) displayed on top
of MIDI note onsets of the
Bach Prelude.
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Figure 15. Two graphs rep-
resenting human judg-
ments of Emotional Force
(solid) and IR analysis
(dot) of audio recordings of
two musical performances.



aspects of musical information processing. One
such architecture that was suggested for emotional
processing assumes an existence of two separate
brain mechanisms that interact in analysis of com-
plex information (Huron 2005): a “fast brain” that
deals primarily with pre-processing of sensory infor-
mation, forming perceptions from the stream of
constantly impinging sensory excitations, and a sec-
ond component, the “slow brain,” that interacts
with the fast brain by performing appraisal of the
fast-brain performance. This architecture is de-
scribed in Figure 16.

In the context of our computational model, we
consider the functions of the fast brain to be related
to basic pattern-recognition actions, such as feature
extraction and data reduction. Anticipation could
be considered as an appraisal that is done by the
slow brain. That is, anticipation involves evaluating
the utility of the past perception for explaining the
present in terms of assigning a score to the fast-
brain functions according to the “relative reduction
of uncertainty about the present when considering
its past” (a quote from the definition of IR).

It should be noted that selection of informative
features is commonly done in other signal-processing
applications, such as speech understanding or com-
puter vision, mostly in terms of classification per-
formance. That is, features are considered to be
informative if they have significant mutual informa-
tion with the class labels for a particular recognition
task. In music, the task of recognition is secondary,
and it is only natural to assume that anticipation,
rather then recognition, is a more appropriate task
for describing music information-processing opera-

tions. In other words, information contents for mu-
sic signals should be measured not by mutual infor-
mation between signal features and a set of signal
labels (recognition task), but as mutual information
between past and present features (anticipation task).

Conclusion

This article presents a novel approach to (auto-
matic) analysis of audio and music based on an “an-
ticipation profile.” The ideas are developed from a
background of information theory and basis decom-
position, through the idea of a vector approach to
the anticipation measurement, and ending with
some higher-level reflections on its meaning for
complex musical signals. The anticipation profile is
estimated by evaluating the reduction in the
uncertainty (entropy) of a variable resulting form
prediction based on the past. Algorithms for estima-
tion of the anticipation profile were presented, with
applications for audio signal characterization and
music analysis. Discussions show that this mea-
sure also resolves several ill-defined aspects of the
structure-versus-noise problem in music and in-
cludes the listener as an integral part of structural
analysis of music. Moreover, the proposed anticipa-
tion measure might be related to more general as-
pects of appraisal or self-supervision of
information-processing systems, including aspects
of emotional brain architecture.
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Appendix

Given a signal with power spectrum S(w), the SFM
is defined as

Rewriting it as a discrete sum gives

(13)

which shows that SFM can be viewed as the ratio
between the geometric and arithmetic means of sig-
nal spectra, thus being positive and less than or
equal to unity. The SFM equals unity only if all
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spectrum values are equal, thus meaning a flat spec-
trum or a white-noise signal.

Information Redundancy

Given a random variable x, with probability distri-
bution f(x), the entropy of the distribution is defined
(Cover and Thomas 1991) as

(14)

For the joint distribution of two variables x1, x2,
the joint entropy is defined as

(15)

The average amount of information that the vari-
able x1 carries about x2 is quantified by the mutual
information

(16)

Generalization of the mutual information for the
case of n variables yields

(17)

This function measures the average amount of com-
mon information contained in variables x1, x2, . . . , xn.
Using the mutual information, we originally define
the information rate (IR), denoted ρ, to be the differ-
ence between the common information contained
in the variables x1, x2, . . . , xn and the set x1, x2, . . . ,
xn–1, namely, the additional amount of information
that is added when one more variable is observed:

(18)

Because in our application we are considering
time-ordered samples, this redundancy measure
corresponds to the rate of growth of the common
information as a function of time. It can be shown
that the following relationship exists between re-
dundancy and entropy:

(19)

This shows that redundancy is the difference be-
tween the entropy (or uncertainly) about isolated xn

and the reduced uncertainty of xn if we know its
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past. In information theoretic terms, and assuming
a stationary process, this measure equals the differ-
ence between the entropy of the marginal distribu-
tion of the process xn and the entropy rate of the
process, equally for all n.

Relationship Between SFM and IR

To assess the amount of structure present in a sig-
nal in terms of its information content, we observe
the following relationships between signal spec-
trum and entropy. Entropy of a “white” Gaussian
random variable is given by

(20)

whereas the entropy rate of a Gaussian process (the
so called Kolmogorov-Sinai Entropy) is given by

(21)

According to the previous section, IR is defined as
a difference between the marginal entropy and en-
tropy rate of the signal x(t), r = H(x) – Hr(x). Inserting
the expressions for entropy and entropy rate, one ar-
rives at the following relation:

(22)

One can see here that IR is equal to one-half of
the logarithm of SFM.

Vector-IR as Sum of Independent Component
Scalar-IR

Given a linear transformation X = AS between blocks
of the original data (signal frame of feature vector X)
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and its expansion coefficients S, the entropy rela-
tionship between the data and coefficients is H(X) =
H(S) + log | det(A) |. For a sequence of data vectors,
we evaluate the conditional IR as the difference be-
tween the entropy of the last block and its entropy
given the past vectors. (This is a conditional en-
tropy, which becomes the entropy rate in the limit
of an infinite past.) Using the standard definition of
multi-information for signal samples x1 . . . xnL,

(23)

we originally define and develop the expression for
vector-IR as

(24)

This shows that the vector-IR can be evaluated from
the difference of the entropy of the last block and
the conditional entropy of that block given its past.

Using the transform relationship, one can equiva-
lently express vector-IR as a difference in entropy
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and conditional entropy of the transform coeffi-
cients r(X1, . . . , XL) = H(SL) – H(SL | S1, . . . , SL–1).
(Note that the dependence upon determinant of A
is cancelled by subtraction.) If there are no depend-
encies across different coefficients and the only
dependencies are within each of the coefficients
sequences as a function of time (i.e., the trajectory
of each coefficient is time-dependent, but the coeffi-
cients between themselves are independent), we
arrive at the relationship

(25)

Combining these equations gives the desired result:

(26)

MATLAB Code

MATLAB code of the IR analysis, along with spe-
cific examples of sound analysis used in this article,
can be found online at http://music.ucsd.edu/
~sdubnov/InformationRate.
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