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ABSTRACT

This paper describes a novel analysis-synthesis method
based on estimation and comparison between spec-
tral methods that are specifically designed for mod-
eling of random signals. These methods are an al-
ternative to the discrete Fourier transform, providing
high-resolution, smooth and easily interpretable spec-
tral estimation over short signal frames. It is gen-
erally acknowledged that musical signals that exhibit
both periodicity and variations can be modeled as si-
nusoidal components with various extents of modula-
tion (generally characterized as band-limited frequency
components), and remaining noise or wide-band fre-
quency components that describe unvoiced and other
noisy parts of the signal spectrum. Using single frame
Fourier analysis makes is difficult to tell if spectral en-
ergy at a particular frequency is due to noise or sinu-
soidal components. Existing methods for such decom-
position usually consider properties of Fourier phases,
which are noisy. Our method decomposes a signal into
sinusoidal, modulated sinusoidal and noise components
based on a comparison between two spectral repre-
sentations, namely autoregressive (AR) and minimum
variance distortionless response (MVDR), both calcu-
lated from linear prediction coefficients (LPC) in a time
varying manner. Using different optimal properties
of each model, we develop estimators for frequencies
and amplitudes (spectral envelope) of sinusoidal com-
ponents (spectral lines) in noise and derive a “noisality”
index that assigns different weights to contributions of
sinusoidal and noise components at every frequency.
Examples of synthetic and real sounds are presented in
the paper.
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I. INTRODUCTION

Sound analysis-synthesis methods are required for
a variety of applications, including sound editing and
transformation, modeling of acoustical sources, such
as musical instruments and voices, sound compression,
transmission and more. These methods are based on

a detailed analysis of the time varying frequency prop-
erties of a sound, representing the signal in terms of
changing frequency contents and identifying its basic
sources of variation. One of the most popular model-
ing techniques for musical signals is sinusoidal analysis
[1][2]. These methods decompose a sound into collec-
tion of sinusoids with time varying amplitudes, frequen-
cies and sometimes also phases. Such decomposition
is usually done using Fourier analysis over short time
frames, followed by steps of peak detection, interpo-
lation and tracking of partials over sequence of FFT
vectors. Due to the finite frequency resolution of the
resulting short time FFT analysis, interpolation is re-
quired in order to find the exact frequencies of the spec-
tral peaks. Moreover, modeling of noisy or modulated
parts of the signal is possible by sinusoids with fast and
random varying phase if the analysis times step is suffi-
ciently small (few milliseconds). When longer analysis
steps are used, or when phases are not estimated, it
is necessary to decide at the analysis step whether an
energy peak at a particular frequency belongs to sinu-
soidal or noise sources, in order to resynthesize them
accordingly. The heuristics for sinusoidal versus noise
decomposition include checking for existence or lack
of particular phase relations among adjacent frequency
bins [3] and/or phase continuity across FFT bins in
subsequent frames [4]. More elaborate methods em-
ploy additional steps for separate modeling noisy parts
of the signal, such as obtaining a residual part by care-
ful subtraction of the sinusoidal components from the
original signal [5], or using random phase modulations
for broadening of the spectral peaks at the sinusoidal
frequencies [6][7]. Mixed harmonic and noise [8] and
harmonic, sinusoidal and noise [9] methods appeared
also in speech and general audio modeling applications
and are known for their favorable properties in terms
of quality versus synthesis versatility and compression
tradeoffs.

In this paper we develop a new method for analy-
sis of sounds that is completely different from exist-
ing sinusoidal methods in the sense that it does not
rely upon standard Fourier analysis. We use methods
of parametric spectral estimation [10], namely autore-
gressive (AR) and minimum variance distortionless re-



sponse (MVDR), where the parameters of both models
are derived from a single Linear Prediction (LP) [11]
estimate that is performed in time varying fashion over
successive frames containing short segments of signal
samples. The AR model assumes that the analyzed
signal results from passing a white noise through a res-
onant all pole filter. AR can be also used to repre-
sent narrow spectral lines caused by sinusoids, which
are modeled as very narrow resonances (poles on the
unit circle) at precise frequencies of the sinusoids. One
of the main advantages of using AR for estimation of
spectral lines is that it is not limited in terms of fre-
quency resolution, giving precise frequencies of spec-
tral lines even for short segments of the signal. It is
known, though, that AR modeling of spectral lines can
be severely degraded if the signal is corrupted by noise.
This limitation severely limits the applicability of AR
modeling in the case of mixed sinusoidal and noisy sig-
nals, like the music signals that we are investigating.
We show that this limitation can be overcome by using
a high order AR model, which is later reduced based
on comparison to MVDR spectrum. The MVDR spec-
tral analysis method has almost complementary prop-
erties: it is derived from signal powers at the output
of an especially designed filter bank that passes a sig-
nal at particular frequency in a distortionless manner,
with minimum interference by sinusoidal components
at other frequencies. This results in spectral estimates
that have optimal estimates of sinusoidal signal pow-
ers at different frequencies that are statistically robust
and have a smooth shape across frequencies, but also
having poor frequency resolution that does not allow
for detection of sinusoidal peaks when the frequency of
the sinusoidal components is unknown a-priori. Using
a comparison between AR and MVDR estimate we are
able to detect the spectral peaks with high precision
and also derive a “noisality” index, that is used for
performing separate resynthesis of the sinusoidal and
noise components.

II. BACKGROUND ON PARAMETRIC

SPECTRAL ANALYSIS

In this section we present a short overview of the
AR and MVDR spectral analysis methods and present
a simple iterative algorithm that relates the parameters
of the two representations.

II-A. AR spectral Analysis

The AR model is defined by

x(n) =

p
∑

i=1

aix(n − i) + e(n) (1)

where x(n) is the current value of the time series,
a1, ..., ap are predictor coefficients, p is the model order
(also indicating the number of the past values used to
predict the current value) and e(n) represents a one-
step prediction error, i.e. the difference between the
predicted value and the current value at this point. The
AR model can be used to create two filters: a prediction
error filter through which x(n) is filtered to produce the
error sequence e(n) and a synthesis filter that recreates
the samples x(n) by filtering e(n) as its input. The
optimum predictor coefficients are such that the pre-
diction error is minimized. There are efficient methods
for computation of optimal predictor coefficients from
data samples, generally known as linear prediction [11].

It should be noted that common use of LP is for
the purpose of modeling spectral envelopes in speech
signals that roughly correspond to resonant properties
of the human vocal tract. These models are low order
and are not intended for capturing individual sinusoidal
components. AR model can be used for spectral analy-
sis by estimating the optimal filter and using the spec-
tral shape of the synthesis filter to describe the signal
spectrum. This spectrum shows how the power (vari-
ance) is distributed as a function of frequency once the
oscillatory components in the time series are produced
by a filter that spectrally shapes or colors a white input
signal (the error signal).

Writing the AR equation in the spectral domain
(using Z transform for the sequences x(n) and e(n),
giving X(z) and E(z) respectively) we have X(z) =
H(z)E(z), where

H(z) =
1

1 − a1z−1 − a2z−2 − ... − apz−p
. (2)

The estimates for the different frequency components
of a time series can be calculated from the poles of
H(z), i.e., the roots of the denominator of the H(z)
polynomial.

The spectrum of the modeled time series, PAR(ejω)
(also to be denoted as PAR(ω)), is obtained by multi-
plying the prediction error variance σ2

e with the square
of the transfer function.

PAR(ejω) = σ2
e |H(ejω)|2 =

σ2
e

|1 − a1e−jω − ... − ape−jpω |2

(3)

II-B. The MVDR Spectrum

The Minimum Variance Distortionless Response
(MVDR) spectrum is a flexible spectral analysis
method which was introduced by Capon [12], and is
mostly employed in array processing applications, and
has also been investigated in relation to other appli-
cations such as speech modeling [13], audio filtering



[14] and voicing detection [15]. The MVDR spectrum
PMV (ω) is given by

PMV (ω) =
1

vH(ω)R−1
p+1v(ω)

(4)

where v(ω) = [1 ejω ej2ω ... e−jpω ] is a frequency tun-
ing vector with vH denoting its conjugate transpose,
and Rp+1 is autocorrelation matrix. The spectrum or-
der p corresponds to the largest correlation lag in the
autocorrelation matrix.

The MVDR spectrum has an affinity with non-
parametric filterbank spectral analysis methods. In the
filter-bank interpretation of periodogram (FFT based)
spectral analysis methods, the spectrum at any given
frequency can be viewed as the power at the output of a
bandpass filter. In this case the bank of bandpass filters
is data independent and its characteristics are defined
by the length and choice of the analysis window, ar-
ranged along an equally spaced frequency grid. More-
over, the frequency characteristics of the individual fil-
ters are such that they are also frequency independent
between themselves. Similarly to periodogram-based
methods, the MVDR spectral estimate can be concep-
tually viewed as an output of a bank of filters, with
each filter centered at one of the analysis frequencies.
But, in contrast to FFT based methods, the bandpass
filters of the MVDR bank are both data and frequency
dependent, an information that is captured by the sig-
nal autocorellation matrix Rp+1 appearing in the defi-
nition of the MVDR spectrum in equation (4). In par-
ticular, the MVDR spectral estimate at frequency ω

utilizes a specially designed FIR bandpass filter with
impulse response w = {w(n), n = 0..p} whose pass-
band characteristics are designed so that it would pass
distortionlessly the signal components at the frequency
ω, expressed mathematically as

W (ω) =

p
∑

i=0

w(k)e−jkω = wv = 1. (5)

and also minimizing the overall filter output power for
a given input signal, expressed as minw wHRw. These
filter design and error minimization steps are done in
the course of deriving the MVDR spectrum. Details of
this derivation are not brought here due to space limi-
tations. The MVDR spectrum is a set of output powers
of these filters, which were designed according to the
desired passband and attenuation characteristics as de-
scribed above, and specifically for the analyzed signal.
In other words, the MVDR filter designed for frequency
ω will let the input signal component at frequency ω

pass through undistorted (passband), and will mini-
mize the total output power of the filter, a situation

that ensures that the remaining frequency components
of that specific signal are suppressed in an optimal man-
ner by putting deep nulls (notches) at competing fre-
quencies existing in the specific signal. This process
is repeated for every frequency component, giving the
complete MVDR spectrum.

II-C. Relation between AR and MVDR spectra

The MVDR parameters can be related to the AR
spectrum in a very interesting and computationally ef-
ficient way. The AR spectrum is parameterized by a
set of Linear Prediction Coefficients (LPC) ak, k = 1..p,
(we also include a0 = 1 in the equations below) and a
prediction error variance (gain) σ2

e . The parameters
µ(k) of the MVDR spectrum can be directly obtained
using a non-iterative computation based upon the LPC
[16][10]

µ(k) = {
1

σ2
e

∑p−k
i=0 (p + 1 − k − 2i)aia

∗

i+k k > 0

µ∗(−k) otherwise

(6)

Using this parameterization, the MVDR spectrum
can be written as

PMV (ω) =
1

∑p
k=−p µ(k)e−jkω

. (7)

Thus, in order to obtain both AR and MVDR spec-
tra, it is sufficient to perform a single LPC analysis of
the signal samples in every frame and transform the
AR ai coefficients into µ(k) coefficients of MVDR rep-
resentation. It should be noted that this method does
not actually design and implements the MVDR filters
that could be used to filter a signal in a distortionless
manner at every frequency. What the current method
does is allow estimating the MVDR spectrum for all
frequencies, “as if” the signal was passed through a
bank of MVDR filters where every filter was designed
for the particular signal at every frequency, and then
the power at the output of this filter bank was recorded.

It was shown by Burg [17] that the MVDR spectrum
can be written as the harmonic mean of all AR spectra
for orders 0 to p:

1

PMV (ω)
=

p
∑

k=0

1

PAR(k)(ω)
, (8)

where we introduce the notation AR(k) to denote the
order of the AR model. As a result of this averaging,
the MVDR spectrum has a smoother appearance and
lower resolution than the corresponding p-th order AR
spectrum.



III. MODEL OVERFITTING AND

REDUCTION

The LP method [11] attempts to reduce the overall
variance of the prediction residual by trying to match
the AR synthesis filter to the signal spectrum. This can
be viewed as an attempt of the LP method to create a
prediction error filter that places zeros on the poles of
the signal spectrum, thus reducing to minimum the fil-
ter output and minimizing the prediction error. For a
single sinusoid, it is evident that LP can predict the sig-
nal with zero error, expressing a sinusoid at frequency
ω0 as the following AR equation1

x(n) = 2cos(ω0)x(n − 1) − x(n − 2) (9)

This is a two pole filter, with poles located at angles ω0

and −ω0 on the unit circle. When the signal consists of
few sinusoidal partials only, the LP poles move closer
to the unit circle as the filter order is raised, until the
number of poles is twice the number of sinusoids (the
factor two is due to prediction of a real signal, which
requires two poles at conjugate locations for every si-
nusoidal component). It can be shown that in case of
L sinusoidal components, AR model of order p > 2L

can perfectly fit the signal, resulting in zero error.

III-A. Estimation of sinusoids in noise

In the case when both sinusoidal and noise compo-
nent are present in the signal, the LP method drasti-
cally changes its performance. In order to understand
this effect let us consider a signal modeling problem
where we observe a signal that is a sum of two pro-
cesses, one sinusoidal and the other colored noise. Each
individual signal can be efficiently represented by an
AR filter: In the case of sinusoidal signal, the signal is
represented by an AR model with poles close to (prac-
tically “on”) the unit circle. In such a case, the predic-
tion can be exact, resulting in residual error that is very
close to zero. Let us assume that the noise part could
be written in terms of a white noise passing through
an AR filter. In this case the poles are inside the circle
closer to the origin, and the variance of the excitation
white noise, which equals to the prediction residual, is
much higher. When we sum both components, the re-
sulting spectrum, by construction, is a sum of two finite
order AR processes. This can be written as a sum of
two AR filters, resulting in a filter that can be written
as a ratio of two polynomials (called “rational filter”),
where the polynomials in the denominator and numer-
ator are of order higher then one. To demonstrate this

1The relation is simpler for a complex phasor e
−jω0n, resulting

in order 1 AR filter.

effect, let us assume filter

B(z) =
σ

1 − 2Rcos(θ)z−1 + R2z−2
(10)

that represents the noise, with pole at radius R at angle
θ and filter

A(z) =
g

1 − 2rcos(ω)z−1 + r2z−2
(11)

that represents a sinusoidal component (the gain g is
used to scale the amplitude of the narrow band noise
that approximates a sinusoid). Note that we have
moved the pole of the sinusoidal model just a little bit
inside the unit circle by assuming a pole with radius
r < 1, r → 1, to avoid singularities. The sum filter
becomes

C(z) = A(z) + B(z) = (12)

= g(1−2Rcos(θ)z−1+R2z−2)+σ(1−2rcos(ω)z−1+r2z−2))
(1−2rcos(ω)z−1+r2z−2)(1−2Rcos(θ)z−1+R2z−2) ,

which is a rational polynomial with nominator of sec-
ond degree and denominator of fourth degree. This
filter, and accordingly its power spectrum, have both
poles and zeros. The poles remain at the original loca-
tions, but the zeros add spectral notches at new loca-
tions, which are the roots of the new nominator poly-
nomial. The resulting spectrum is no more a pure AR
but is actually a combination of autoregressive and a
moving average (MA) process, called ARMA.
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Fig. 1. Pole zero plot of mixed signal and its AR approximation.

It should be noted that any finite ARMA process can
be represented by an infinite order AR model. This can
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Fig. 2. Progressive change in pole locations near the sinusoidal
pole for increasing orders of AR model.

be shown by performing a polynomial division of the
AR part by the MA filter. The residual polynomial af-
ter division can be expanded into an infinite series, re-
sulting in a high order AR model. When ARMA signal
is modeled by low order AR, the poles in the vicinity
of the sinusoidal component are drawn closer to origin
in direction opposite from location of the zero. As the
order of AR increases, the pole matching the sinusoidal
part approaches its true location. The additional poles
spread almost evenly around 2π, overall matching the
remaining noise part of the spectrum.

Figure 2 shows the results of increasing the order p

of an estimated AR model, denoted by AR(p), for a
signal comprising of a sum of narrow band (i.e. ap-
proximately sinusoidal) and wide band signals. Both
signals are represented by AR(2) models, the narrow
band signal with two conjugate poles of radius 0.99 at
angles ±0.2π and a noise signal with poles of radius 0.6
at angles ±0.6π. The summation creates additional ze-
ros of radius 0.961 at angles ±0.235π, resulting in an
ARMA model.

Figure 3 shows a comparison between power spec-
trum estimate of a signal created by passing a white
noise through ARMA filter and the spectrum of an
AR(20) model estimated for the same signal. The orig-
inal ARMA filter is plotted in dashed line. It can be
see that AR(20) matches rather correctly the sinusoidal
(narrowband) component, while the wide-band part is
captured in a ”wavy” manner by multiple poles.
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III-B. Sinusoidal extraction and parameter es-

timation

As explained above, the MVDR spectrum gives an
estimate of the power of the signal at every frequency
in terms of the power of the output of a bandpass fil-
ter that is optimally designed, both data and frequency
wise, so that a sinusoidal frequency at every frequency
passes through undistorted. It was shown above the
sufficiently high order AR spectrum is capable of mod-
eling signals that are mixture of sinusoidal and noise
components, placing the poles of the AR model “on”
the sinusoids and “spreading” the remaining poles over
the remaining noise envelope. If the AR peak signifi-
cantly exceed the power of MVDR estimate, it is plau-
sible to assume that a sinusoidal component is present
at this frequency. If the powers of both spectral estima-
tors are comparable, there is little evidence for presence
of a periodic component. The ratio of the spectral pow-
ers of the two spectral methods can be used to separate
the AR model into sinusoidal and noise parts, or could
be used continuously as a “noisality” measure to weight
noise and sinusoidal contributions at every partials.

Figure 4 shows analysis of one frame from a record-
ing of voice signal from a Suzanne Vega song. The
graph show LPC, MVDR and standard FFT (Peri-
odogram) spectra. Visual inspection of the graph re-
veals six frequency peaks whose LPC spectrum is sig-
nificantly higher then MVDR. These partial compo-
nents appear at frequencies 213.89, 416.86, 1691.10,
1908.46, 2546.92, 2749.49 Hz, which are almost har-
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monically related to the lowest frequency of 213.89 Hz,
with multiplicative factors of 1.94, 7.90, 8.92, 11.91,
12.85, i.e. approximately partials 2,8,9,12,13, with the
highest partial deviating by 15% from the fundamental.

IV. RESULTS

We present results of analysis - synthesis of a vocal
solo singing recording by Suzanne Vega. The analy-
sis was performed with AR(80), analysis frame of 24
msec. and overlap 50%. In order to achieve partial
tracking, a simple best winner continuation selection
was applied for every pole, with maximum allowed de-
viation in frequency of approximately a semitone (6%)
and maximal allowed change in amplitude not exceed-
ing 12 dB. Figure 5 shows the time varying frequencies
of the different poles of Vega singing signal. In order
to distinguish between the sinusoidal and noise parts,
the analysis parameters were divided into two groups
based on noisality, with time-frequency points having
AR to MVDR power ratio above 4.2dB being classified
as sinusoidal, and those below this ratio classified as
noise.

Making hard decision between sinusoidal and noise
components is undesirable since there is not clear dis-
tinction between various levels of sinusoidality and
noisiness and as can be seen from the figure, there are
continuous transitions between noise and sinusoids over
time. Accordingly, instead of generating two separate
signals, we used all poles to generate both sinusoidal
and noise signals, and applied changing relative weights
to sinusoidal and noise parts according to the following

Fig. 5. Sinusoidal and noise track of Vega singing.

relation:

xr(t) =

p
∑

k=1

[γk(t)sk(t) +
√

1 − γ2
k(t)nk(t)] (13)

where xr(t) is the reconstructed signal, sk(t) and nk(t)
are sinusoidal and noise signals of the k-th track, gen-
erated according to MVDR amplitude at frequencies
of the poles for the sinusoidal part, and according to
AR filter model for the noise part, with γk(t) being
a time varying weight (“noisality index”) for track k,
whose value at time t are derived according to the AR
to MVDR power ratio. So, for frequencies whose AR
spectrum significantly “overshoots” the MVDR spec-
trum, γ is set close to 1, while for cases that MVDR is
higher then AR spectrum, the noise model dominates
by setting gamma close to zero. The values of γk(t)
implement this approximate mapping using a sigmoid
function that is calibrated to γ value 0.5 at power AR
to MVDR power ratio of 6dB, and range of ≈ ±5dB
from zero to unit γ values.

Additionally, sinusoidal “widening”, or band-limited
modulation of sinusoidal components can be approxi-
mately estimated in terms of the pole radius. When the
radius r is close to 1, the 3-dB bandwidth B (in Hertz)

can be approximated by B ≈ − ln(r)
πT

, where T is the
sampling interval (in seconds). This allows introduc-
ing modulation with the appropriate bandwidth into
the sinusoidal components, resulting in “bandwidth en-
hanced” sinusoids. It should be noted that bandwidth
estimation is very difficult in FFT based models, since
it is limited by the analysis rate for determining phase



or instantaneous frequency values for consequent es-
timation of their deviations. Other criteria, such as
matching the complex FFT or effectively comparing the
theoretical complex analysis window to the actual FFT
is related to noisality in non-trivial manner and requires
sophisticated and empirically calibrated threshold for
deciding between sinusoidal and noise bands [3]. Other
statistical models [18] based on fluctuations of the tem-
poral envelope are reported at this point for synthetic
signals only.

In the resynthesis, sinusoidal frequency changes over
time are made continuous by interpolation between fre-
quencies and amplitudes across consecutive frames in
every track. Synthesis of the noise part does not require
detailed interpolation. Moreover, in order to avoid ex-
cessive accumulation of noise from separate noise com-
ponents at different frequencies, each noise component
is band-limited. The bandwidth of the noise compo-
nent is chosen to be proportional to signal sampling
frequency divided by the model order. The intuition
behind this limit is that the noise part is approximately
described by equally spread poles around the 2π range.

The following figures 6 - 9 show spectrograms of the
original, noise, sinusoidal and combined (sum) signal.
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Fig. 6. Original signal spectrogram.

V. SUMMARY AND CONCLUSIONS

In this paper we presented a method for analysis of
audio signals that is based on comparison between two
types of parametric spectra - AR spectrum and MVDR
spectrum. Summarizing the advantages of our method,
we can say that:
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Fig. 7. Sinusoidal component spectrogram.
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• Parametric spectral methods better utilize signal
statistics and are more robust in comparison to Fourier
methods that use single snapshot for every frame2.
• The AR spectral method allows precise (high reso-
lution) detection of sinusoidal component frequencies
without interpolation or zero padding.
• The MVDR method gives optimal estimates of the
sinusoidal magnitudes.

2It should be noted that averaging of Fourier estimates is pos-
sible using shorter FFTs, which may add to robustness but on
the expense of proportionally reducing the spectral resolution.
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• Overfitting of AR model allows modeling of signals
that are mixture of sinusoids and noise.
• Bandwidth of modulation of sinusoidal components
can be estimated from pole radius.
• Relative weights of the sinusoidal and wide-band
noise components are derived from the ratio of spec-
tral powers of the AR and MVDR models.
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